
Discrete-Time Neural Identifier for Linear
Induction Motors

Alma Y. Alanis1, Jorge Rivera1, Eduardo Rangel1 and Gustavo Hernandez1

Abstract– This paper focusses on a discrete-time neural iden-
tifier applied to a Linear Induction Motor (LIM) model, whose
model is assumed to be unknown. This neural identifier is robust
in presence of external and internal uncertainties. The proposed
scheme is based on a discrete-time recurrent high order neural net-
work (RHONN) trained with a novel algorithm based on extended
Kalman filter (EKF) and particle swarm optimization (PSO), us-
ing an off-line series-parallel configuration. Experimental results
are included in order to illustrate the applicability of the proposed
scheme.

Keywords–Linear Induction Motor, Recurrent high or-
der neural networks, Kalman filtering learning, Discrete-

time nonlinear systems, Neural identifier.

I. Introduction

Linear induction motors (LIM) is a special electri-

cal machine, in which the electrical energy is converted

directly into mechanical energy of translatory motion.

Strongest interest on these machines raised in the early

1970, however, in the late 1970, the research intensity

and number of publications dropped. After 1980, LIM

found their first noticeable applications in, among oth-

ers, transportation industry, automation, and home ap-

pliances [8], [4]. LIM has many excellent performance

features such as high-starting thrust force, elimination

of gears between motor and motion devices, reduction

of mechanical loses and the size of motion devices, high

speed operation, silence, and so on [4], [20]. The driving

principles of the LIM are similar to the traditional ro-

tary induction motor (RIM), but its control characteris-

tics are more complicated than the RIM, and the para-

meters are time varying due to the change of operating

conditions, such as speed, temperature, and rail config-

uration.

Modern control systems usually require detailed

knowledge about the system to be controlled; such

knowledge should be represented in terms of differential

or difference equations. This mathematical description

of the dynamic system is named as the model. There

can be different motives for establishing mathematical

descriptions of dynamic systems, such as: simulation,

prediction, fault detection, and control system design.

In this sense, basically there are two ways to obtain a

model; it can be derived in a deductive manner using

physics laws, or it can be inferred from a set of data col-

lected during a practical experiment. The first method

can be simple, but in many cases is excessively time-

1 CUCEI, Universidad de Guadalajara, Av. Revolucion 1500,
Col. Olimpica, C.P. 44430, Guadalajara, Jalisco, Mexico, e-mail:
almayalanis@gmail.com

consuming; it would be unrealistic or impossible to ob-

tain an accurate model in this way. The second method,

which is commonly referred as system identification [22],

could be a useful short cut for deriving mathematical

models. Although system identification not always re-

sults in an accurate model, a satisfactory one can be

often obtained with reasonable efforts. The main draw-

back is the requirement to conduct a practical experi-

ment, which brings the system through its range of op-

eration [6].

Due to their nonlinear modeling characteristics, neural

networks have been successful applied in control sys-

tems, pattern classification, pattern recognition, and

identification problems. The best well-known training

approach for recurrent neural networks (RNN) is the

back propagation through time [10]. However, it is a

first order gradient descent method, and hence its learn-

ing speed could be very slow. Another well-known train-

ing algorithm is the Levenberg—Marquardt one [10]; its

principal disadvantage is that is not guarantee it will find

the global minimum and its learning speed could be slow

too, this depends on the initialization. In past years, Ex-

tended Kalman Filter (EKF) based algorithms has been

introduced to train neural networks [1]. With the EKF

based algorithm, the learning convergence is improved

[10]. The EKF training of neural networks, both feed-

forward and recurrent ones, has proven to be reliable for

many applications [10]. However, EKF training requires

the heuristic selection of some design parameters which

not always are an easy task [1].

On the other hand Particle Swarm Optimization

(PSO) technique, which is based on the behavior of a

flock of birds or school of fish, is a type of evolutionary

computing technique [14]. It has been shown that the

PSO training algorithm takes fewer computations and

is faster than the BP algorithm for neural networks to

achieve the same performance [14].

In this paper a recurrent high order neural network

(RHONN) is used to design the proposed neural iden-

tifier for nonlinear systems, whose mathematical model

is assumed to be unknown. The learning algorithm for

the RHONN is implemented using an Extended Kalman

Filter with particle swarm optimization (EKF-PSO)

based algorithm. We consider a class of Multi-Input

Multi-Output (MIMO) discrete-time nonlinear system,

for which we develop a neural identifier [16]; then this

identifier is applied to a discrete-time unknown nonlin-

ear system. This identifier is based on a recurrent high

Memorias del Congreso Nacional de Control Automático 2012
Cd. del Carmen, Campeche, México, 17 al 19 de Octubre de 2012

D.R. © AMCA Octubre de 2012 341



order neural network (RHONN) [17], which identify the

model of the unknown plant dynamics. The applicabil-

ity of these schemes is illustrated via experimental for a

Linear Induction Motor (LIM).

II. Preliminaries

Through this paper, we use  as the sampling step,

 ∈ N , |•| as the absolute value and, k•k as the Euclidian
norm for vectors and as any adequate norm for matrices.

Consider a MIMO nonlinear system:

 ( + 1) =  ( ()   ()) (1)

 () =  ( ()) (2)

where  ∈ <, ∈ <, and  ∈ < × < → < is a
nonlinear function.

A. The EKF Training Algorithm

It is known, that Kalman filtering (KF) estimates the

state of a linear system with state and output additive

white noises [9]. For KF-based neural network training,

the network weights become the states to be estimated.

In this case the error between the neural network out-

put and the measured plant output can be considered as

the additive white noise [10]. Although the white noise

assumption is seldom satisfied, the developed algorithm

has proven to be efficient in real applications [1], [10].

Due to the fact that the neural network mapping is non-

linear, an EKF-type is required [17]. The training goal

is to find the weight values which minimize the predic-

tion error. In this paper, we use an EKF-based training

algorithm described by

 ( + 1) =  () +  ()  () (3)

 () =  () () ()

 ( + 1) =  ()− ()
>
 () () + ()

 = 1 · · ·  
with

 () =
£
 () +>

 () () ()
¤−1

(4)

 () =  ()− b () (5)

where  () ∈ < is the output estimation error and
 () ∈ <× is the weight estimation error covari-
ance matrix at step ,  ∈ < is the weight (state)
vector,  is the respective number of neural network

weights,  ∈ < is the plant output, b ∈ < is the NN
output,  is the number of states,  ∈ <× is the
Kalman gain matrix,  ∈ <× is the NN weight es-
timation noise covariance matrix,  ∈ <× is the error
noise covariance, and  ∈ <× is a matrix, in which
each entry (


) is the derivative of the th neural out-

put with respect to th neural network weight (

)

given as follows:



() =

∙
 ()

 ()

¸>
(6)

where  = 1   and  = 1  . Usually , 

and  are initialized as diagonal matrices, with entries

 (0),  (0) and  (0), respectively. Due to typically

the entries  (0),  (0) and  (0) are defined heuristi-

cally, in this paper we propose the use of a PSO algo-

rithm in order to compute off-line such entries to improve

the EKF training algorithm, as follows.

B. PSO improvement for EKF Training Algorithm

Particle swarm optimization (PSO) is a swarm intelli-

gence technique developed by Kennedy and Eberhart in

1995 [13]. In fact, natural flocking and swarm behavior

of birds and insects inspired him to PSO. This technique

has been used in several optimization and engineering

problems ([14], [21]). In the basic PSO technique pro-

posed by Kennedy and Eberhart [13], great number of

particles moves around in a multi-dimensional space and

each particle memorizes its position vector and velocity

vector as well as the time at which the particle has ac-

quired the best fitness. Furthermore, related particles

can share data at the best-fitness time. The velocity of

each particle is updated with the best positions acquired

for all particles over iterations and the best positions are

acquired by the related particles over generations [23].

To improve the performance of the basic PSO algo-

rithm, some new versions of it have been proposed. At

first, the concept of an inertia weight was developed to

better control exploration and exploitation in [14], [19],

[23]. Then, the research done by Clerc [5] indicated that

using a constriction factor may be necessary to insure

convergence of the particle swarm algorithm. After these

two important modifications in the basic PSO, the multi-

phase particle swarm optimization (MPSO), the particle

swarm optimization with Gaussian mutation, the quan-

tum particle swarm optimization, a modified PSO with

increasing inertia weight schedule, the Gaussian particle

swarm optimization (GPSO) and the guaranteed con-

vergence PSO (GCPSO) were introduced in [2], respec-

tively.

In this paper the algorithm proposed in [14] is used in

order to determine the design parameters for the EFK-

Learning algorithm. Initially a set of random solutions

or a set of particles are considered. A random velocity

is given to each particle and they are flown through the

problem space. Each particle has memory which is used

to keep track of the previous best position and corre-

sponding fitness. The best value of the position of each

individual is stored as . In other words,  is the

best position acquired by an individual particle during

the course of its movement within the swarm. It has an-

other value called the , which is the best value of all

the particles  in the swarm. The basic concept of the

PSO technique lies in accelerating each particle towards

its  and  locations at each time step. The PSO

algorithm used in this paper is defined as follows [14]:

1. Initialize a population of particles with random posi-

D.R. © AMCA Octubre de 2012 342



tions and velocities in the problem space.

2. For each particle, evaluate the desired optimization

fitness function.

3. Compare the particles fitness evaluation with the par-

ticles  if current value is better than the  then set

 value equal to the current location.

4. Compare the best fitness evaluation with the pop-

ulation’s overall previous best. If the current value is

better than the , then set  to the particle’s array

and index value.

5. Update the particle’s velocity and position as follows:

The velocity of the th particle of  dimension is given

by:

 ( + 1) = 0 () + 1 rand1 ( ()−  ())

+2 rand2 ( ()−  ())

The position vector of the th particle of  dimension is

updated as follows:

 ( + 1) =  () +  ()

where 0 is the inertia weight, 1 is the cognition acceler-

ation constant and 2 is the social acceleration constant.

6. Repeat the step 2 until a criterion is met, usually a

sufficiently good fitness or a maximum number of itera-

tions or epochs.

In case the velocity of the particle exceeds  (the

maximum velocity for the particles) then it is reduced to

. Thus, the resolution and fitness of search depends

on the . If  is too high, then particles will move

in larger steps and so the solution reached may not be the

as good as expected. If  is too low, then particles

will take a long time to reach the desired solution [14].

Due the above explained PSO are very suitable models

of noisy problems, as the one we are considering.

Since PSO has shown good results in optimization

problems [14] it will be used to optimize the values for

Kalman’s filter covariance matrices instead of heuristic

solutions. For this purpose, each particle will represent

one of the Kalman’s covariance entries.

III. Neural Identification

In this section, we consider the problem to identify

the nonlinear system

 ( + 1) =  ( ()   ()) (7)

where  ∈ <,  ∈ < and  ∈ < × < → < is
nonlinear function. To identify the system (7), we use a

RHONN defined as:

( + 1) = > (() ())  = 1 · · ·   (8)

where  ( = 1 2 · · ·  ) is the state of the -th neuron,
 is the respective number of higer-order connections,

{1 2 · · ·  } is a collection of non-ordered subsets of
{1 2 · · ·   + },  is the state dimension,  is the

number of external inputs,  ( = 1 2 · · ·  ) is the
respective on-line adapted weight vector.

Consider the problem to approximate the general

discrete-time nonlinear system (7), by the following

discrete-time RHONN series-parallel representation [18]:

 ( + 1) = ∗>  (() ()) +    = 1 · · ·   (9)

where  is the -th plant state,  is a bounded ap-

proximation error, which can be reduced by increasing

the number of the adjustable weights [18]. Assume that

there exists an ideal weights vector ∗ such that kk
can be minimized on a compact set Ω ⊂ < The ideal
weight vector ∗ is an artificial quantity required for
analytical purpose [18]. In general, it is assumed that

this vector exists and is constant but unknown and  is

its estimated. The RHONN is trained with a EKF-PSO

algorithm as defined above.

IV. Linear Induction Motor Application

In this section, we apply the above developed scheme

to identify a three-phase linear induction motor. It is

important to note that the proposed scheme is developed

assuming that the plant model, parameters as well as

external disturbances (load torque) are unknown.

A. Motor Model

In order to illustrate the applicability of the proposed

scheme, in this section, the proposed neural identifier is

applied to the  −  model of a LIM discretized by the

Euler technique, which is considered unknown, [3], [15],

[12] as follows

( + 1) = () + ()

( + 1) = (1−2 )()− 1()1()

−1()2()
+1()2()

−1()1()− 3

( + 1) = (1− 6 )() + 4()1()

−41() + 52()

+42()− 4()2()

+51()

( + 1) = (1− 6 )() + 4()2()

−42()− 51()

+41() + 4()1()

+52()

( + 1) = (1 + 9 )()− 7()2

−8()()1 + 7()1

−8()()2 − 10()

( + 1) = (1 + 9 )() + 8()()2

−7()1 − 7()2

−8()()1 − 10() (10)

D.R. © AMCA Octubre de 2012 343



with

1 = sin(()), 2 = cos(())

1 =



, 2 =





3 =
1



, 4 = 

5 =



, 6 =





7 =


(2 − )
, 8 =



2 − 

9 =
2 + 2

(2 − )
, 10 =



2 − 

where () is the position, () is the linear velocity,

() and () are the  and  secondary flux com-

ponents, respectively, () and () are the  and

 primary current components, respectively, () and

() are the  and  primary voltage components, re-

spectively,  is the winding resistance per phase,  is

the secondary resistance per phase,  is the magnetiz-

ing inductance per phase,  is the primary inductance

per phase,  is the secondary inductance per phase, 
is the load disturbance,  is the viscous friction and

iron-loss coefficient and  is the number of poles pairs,

 is the sampling period [3].

B. Neural Identifier Design

The neural identifier proposed is designed as follows:

1( + 1) = 11 ()(()) + 12 () ( ())

2( + 1) = 21 ()(())
2 + 22 ()(())

2

+23 ()(())
15

3( + 1) = 31 ()(())
2 + 32 ()(())

2

+33 ()()
15

4( + 1) = 41 ()(())
2 + 42 ()(())

2

+43 ()(())
15

5( + 1) = 51 ()(())
2 + 52 ()(())

2

+53 ()(())
2 + 54 ()(())

3

+002178()

6( + 1) = 61 ()(())
2 + 62 ()(())

2

+63 ()(())
2 (11)

+64 ()(())
3 + 002178()

where (()) =  tan( ()) + , ̂1() to identify

(), ̂2() to identify (), ̂3() to identify (),

̂4() to identify (), ̂5() to identify () and ̂6()

to identify (). For this application only the fluxes are

considered unmeasurable. The training is performed off-

line, using a series-parallel configuration as shown in Fig.

1. Both the NN and LIM states are initialized randomly.

The associated covariances matrices are computed using

Fig. 1. LIM Identification scheme

the PSO algorithm and the RHONN weights are updated

with the EKF as in (3). The input signals  and 
are selected as chirp functions.

B.1 Reduced order nonlinear observer

The last control algorithm requires the full state mea-

surement assumption [3]. However, rotor fluxes mea-

surement is a difficult task. Here, a reduced order non-

linear observer is designed for fluxes on the basis of rotor

speed and currents measurements. The flux dynamics in

(10). Therefore, the following observer is used [11]:

eΛ( + 1) = eΛ()− 6 eΛ()− 4Θ
()

+4Θ
()() (12)

+4Θ
 ()

where

Λ() =

∙
 ()

 ()

¸
() =

∙
 ()

 ()

¸
Θ() =

∙
cos(()) − sin(())
sin(()) cos(())

¸
 =

∙
0 −1
1 0

¸
The stability proof for (12) is presented in [11].

C. Experimental Results

The proposed scheme is depicted in Fig. 1. The

experiments are performed using a benchmark whose

schematic representation is depicted in Fig. 2. Fig. 3

shows the experimental benchmark for the LIM

The methodology used to implement experimental

identifier is as follows: 1) To validate and to test this

algorithm via simulation in Matlab/Simulink, using a

plant model and their respective parameters; 2) To

download the validated identifier to the DS1104 board;

3) To replace the simulated model state variable val-

ues by the induction motor measurements (current and

angular position, acquired through the DS1104 board

D.R. © AMCA Octubre de 2012 344



.��� ;� 0�$������ ��%����������� �� �$� %�����2%� �� )� ����������

.��� C� ������ ���
����� ����� %�����2%�

�L� %����� ��� ����
����� &H
+��' ����� �����)��� ���
��=
:' 
� ���� )��* �$��
�$ �$� �0336: )����� �$� ��%
�
������� &��������' ������ �� �$��% ������� B' 
� %������
�$� ��%
� ������� �$��
�$ �$� 0%��� M����� /
��� G���$
���
������ &0M/G�' %�(�� ����� ��� E' 
� �%%�2 �$�
0M/G� �
�%
� �� �$� ���
����� ������

$� �+%��������� ���
��� ��� %�������� �� �����(�> .���

: ��� .��� B ���%��2 �$� ������������� %���������� ���
�$� %������� ��� ������ �������2� ���%�������2= .��� E ���
.��� 5 %������ �$� ������������� %���������� ��� �$�
H
+�� �� %$��� " ��� #� ���%�������2� .��� 7 ��� 4 %��	
���2 �$� ������������� %���������� ��� �
������ �� %$���
" ��� #� ���%�������2� .�����2 .��� 36 �$�(� �$� ������	
������� �������

�� ���
�	�����


$�� %�%�� $�� %�������� �$� �%%�������� �� ���
�	
���� $��$ ����� ��
��� ���(��*� �� �$� ������������� ��
��������	���� ��������� �2������ 
$� �������� �� �$�
��
��� ���(��*� (�� %�������� ��	���� 
���� �� �+	

0 100 200 300 400 500 600 700 800 900 1000-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

P
os

it
io

n 
(m

)

Time(ms)

RHONN OUTPUT
OBSERVER OUTPUT

.��� :� /������� �������������

0 100 200 300 400 500 600 700 800 900 1000

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

V
el

oc
it

y 
(m

/s
)

Time(ms)

RHONN OUTPUT
MEASURED VELOCITY

.��� B� ������ �������2 �������������

0 100 200 300 400 500 600 700 800 900 1000

-0.06

-0.04

-0.02

0

0.02

0.04

M
ag

ne
ti

c 
F

lu
x-

al
ph

a 
(W

b)

Time(ms)

RHONN OUTPUT
OBSERVER OUTPUT

.��� E� ��%$� H
+ �������������

0 100 200 300 400 500 600 700 800 900 1000
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

M
a

g
n

e
ti

c 
F

lu
x-

b
e

ta
 (

W
b

)

Time(ms)

RHONN OUTPUT
OBSERVER OUTPUT

.��� 5� I��� H
+ �������������

0 100 200 300 400 500 600 700 800 900 1000-30

-20

-10

0

10

20

30

40

50

60

 C
ur

re
nt

-a
lp

ha
 (

A
)

Time(ms)

RHONN OUTPUT
MEASURED CURRENT

.��� 7� ��%$� �
����� �������������

0 100 200 300 400 500 600 700 800 900 1000-30

-20

-10

0

10

20

30

C
ur

re
nt

-b
et

a 
(A

)

Time(ms)

RHONN OUTPUT
MEASURED CURRENT

.��� 4� I��� �
����� �������������

D.R. © AMCA Octubre de 2012 345



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
-0 .0 2

0

0 .0 2

Ve
lo

ci
ty

 e
rro

r
   

  
  

 (m
/s

)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

-0 .0 2

0

0 .0 2

M
a

g
n

e
ti

c 
flu

x
 a

lp
h

a
 e

rro
r

 (W
b

)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
-0 .0 2

0

0 .0 2

M
a

g
n

e
ti

c 
flu

x
b

e
ta

 e
rro

r
 (W

b
)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

-1

0

1

Cu
rre

n
t a

lp
ha

er
ro

r
(A

)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
-5

0

5

Cu
rre

n
t b

e
ta

er
ro

r
(A

)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
-0 .0 4
-0 .0 2

0
0 .0 2
0 .0 4

Tim e (m s )

Po
si

ti
o

n
   

 (
m

)

.��� 36� ������������� ������

������ -����� ����� ��%����� (��$ � /0, �������$��
 +%��������� ���
��� ���
������ �$� �%%����)����2 �� �$�
%��%���� ������������� ���$������2 ��� �$� �1	���� ����	
��������� �� � �$��� %$��� ���
����� ������ �������$��
��� )���� %
��
�� �� ������% �$� ��	����  -.	/0,
��
��� ������������� �������$��

�
�����
���
���


$� �
�$��� �$��* �$� �
%%��� �� 0 / ��+����
�$��
�$ /��A��� /�,� /L36C�BL33LE;46 ��� ?,��	
?�
 ��+���� �$��
�$ /��A��� 36C343��

�
�
�
�

�
839 �� �� �������  � �� 0���$�# ��� �� !� ��
*������ N��������

���� ���%���� )��*���%%��� ��������� ������� ��� $��$ �����
��
��� ���(��*�O� �   
����������� �� ��
��� ���(��*��
���� 37� ��� :� %%� 337B	334B� ;665�

8;9 I� ��	*�#���� ?� -� ��$��� N�
���	%$��� ��������#����� ��
�$� %������� �(��� �%����#����� �������$�O� ��
�

����� 
�
��
 )**) &
���
�� 
� ��
�"��
���� &
��"����
�� ���� 3� %%�
:74	:4:� ;66;�

8C9 M� "� I�����# I���* ��
��� ?������> �%%�������� �� � ���	
��� ���
����� ������ �� 0%����$� ������ 
$����� ?���������
@����� !
�����A���� ��+���� ;66;�

8:9 �� I������ ��� 0� �� ������ ������  ������� ���
����� ���
!���������� ?��)����� @��������2 /������ ?��)������  ��	
����� 3445�

8B9 �� ?����� N
$� �(��� ��� �$� <
���> ��(���� � �������������
��� ���%���� %������� �(��� �%����#�����O� ��
�

����� 
�
��
 +,,, &
���
�� 
� ��
�"��
���� &
��"����
�� %%� 34B3	
34B5� 3444�

8E9 �� �� .������ ��� �� �� /��2���%�
� ���%���� �%%��+���	
���� I���� ?������> @���2��� ��
���� .
##2 ��� 
����������
���%���� �%%��+������� �%%����$��� ��$� G���2 ��� 0����
��( ���*� @0�� ;66E�

859 0� 0� !�� �� P$��� 
� "� ��� ���� N���%���� ��
��� ���	
(��* ������� ��� � ����� �� ���, ��������� �2����� (��$
����
�)����� �� ��������	����O� �   
����������� �� 02�	
����� ��� ��� ?2)��������� /��� I� ���� C:� ��� :� ;66:�

879 �� .� !������ ������ ���
������ ������� ,+���� @��������2
/������ ,+�����  ������� 344:�

849 �� !����� ��� /� �� ?� "(���� ������
����� �� ������ 0��	
���� ��� �%%���� -����� .��������� 0����� �������� ��$� G�	
��2 ��� 0���� ��( ���*� @0�� 344;�

8369 0� "�2*��� -����� .�������� ��� ��
��� ���(��*�� ��$� G�	
��2 ��� 0���� ��( ���*� @0�� ;663�

8339 �� "�������#�  � �� 0���$�#� �� !� ��
*������ N��������	
���� ��
��� ���(��* ?������ ��� � ������ ���
����� �����O�
/���������� �� �$� �   �
���	?��������� �� 02����� ���
?������� 0�� �������� 
�+��� 0�%���)�� ;667�

83;9 �� -�#���#��� ?� -�������� N
���	��������#����� �� ���������
������� �2����� ��� 
�2��� ���$���O� ?��%
��� ��� ?$���	
���  ����������� ���� ;C� %% 5EC	57:� 3444�

83C9 �� -�����2� ��?�  )��$���� N/������� �(��� �%����#�����O�
��
�

����� 
� ��
 #��� #��
�����
��� -
��� &
��
�
��
 
�
!
"��� !
��
�.�� %%� 34:;	34:7� 344B�

83:9 �� -����� 0� �� ����� ��� !� -� M���2��������$2 N,�����

������� �� � !�������#�� ��
��� (��$ /������� 0(��� ,%��	
��#�����O� ��
�

����� 
� ��
 )**/ #��
�����
��� -
��� &
�0
�
�
��
 
� !
"��� !
��
�.�1 M����
���� I?� ?������ �
�2�
;66E�

83B9 �� !� ��
*������ �� ������ ��� �� �� ?�Q���� N�������� ����
������� ���� ������� �� �� ���
����� �����O� /����������
�.�?K6;� I��������� 0%���� �
�2� ;66;�

83E9 �� 0� /�#�2�*�  � �� 0���$�# ��� G� �
� ��1�������� ��
���
���(��*� ��� ��)
�� ��������� ?������� G���� 0��������� 0��	
��%���� ;663�

8359 �� �� ������� ���  � �� 0���$�#� N������� �%����� ���	
������ $��$ ����� ���
����� ��
��� �)������O� �������������
����� ?��������� �� ��
��� ���(��*� ��?�� 6B� ���������
?������ ;66B�

8379 !� �� �����$�*�� ��� �� �� ?$������
��
� ���%���� ?��	
���� (��$ ���
����� "��$ 	,���� ��
��� ���(��*�� 0%������
M������ ��( ���*� @0�� ;666�

8349 �� 0$�� ��?�  )��$���� N� ������� %������� �(��� �%��	
��#��O� ��
�

����� 
� ��
 #��� #��� &
��� ��
�� &
��"��
%%� E4	5C� 3447�

8;69 �� 
�*�$��$� ��� �� ���� N����
%���� ������� �� �$�
�� ��� ��	
�������� ����� �� � ��� 
���� � �%��� ������ ������� ��������O�
�   
����� ���� �%%������� ���� ;4� %% 3E3	3E5� ���L.�)�
344C�

8;39 �� �� G���$� 0� �� �
� �� ��� !� -� M���2��������$2�
N?��%������ �� .������(��� ��� .���)��* ��
��� ���(��*
���$�����
��� ��� 0$��� 
��� G��� 0%��� /���������O� ��
0
�

����� 
� ��
 #��� #��
�����
��� -
��� &
��
�
��
 
�
!
"��� !
��
�.�� �������� !������� @0�� %%� CCCB	CC:6�
�
�� ;664�

8;;9 G� �
 ��� R� ��� N��������� �2���� ������������� 
����
��������	���� ���
����� ��
��� ���(��*� (��$ ���)�� ��������
�������$��O� ����������� 0�������� ��� 3B7� %%� 3C3	3:5� ;66:�

8;C9 0�	"� P�$���� 0�	�� 0�2����� � -
"���� 
� ��
 ����.��� #����0
�"�
1 ���� C::� %%� CE;	C5E� ;665�

D.R. © AMCA Octubre de 2012 346


