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Discrete-Time Neural Identifier for Linear
Induction Motors
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Abstract— This paper focusses on a discrete-time neural iden-
tifier applied to a Linear Induction Motor (LIM) model, whose
model is assumed to be unknown. This neural identifier is robust
in presence of external and internal uncertainties. The proposed
scheme is based on a discrete-time recurrent high order neural net-
work (RHONN) trained with a novel algorithm based on extended
Kalman filter (EKF) and particle swarm optimization (PSO), us-
ing an off-line series-parallel configuration. Experimental results
are included in order to illustrate the applicability of the proposed

scheme.

Keywords— Linear Induction Motor, Recurrent high or-
der neural networks, Kalman filtering learning, Discrete-
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I. INTRODUCTION

Linear induction motors (LIM) is a special electri-
cal machine, in which the electrical energy is converted
directly into mechanical energy of translatory motion.
Strongest interest on these machines raised in the early
1970, however, in the late 1970, the research intensity
and number of publications dropped. After 1980, LIM
found their first noticeable applications in, among oth-
ers, transportation industry, automation, and home ap-
pliances [8], [4]. LIM has many excellent performance
features such as high-starting thrust force, elimination
of gears between motor and motion devices, reduction
of mechanical loses and the size of motion devices, high
speed operation, silence, and so on [4], [20]. The driving
principles of the LIM are similar to the traditional ro-
tary induction motor (RIM), but its control characteris-
tics are more complicated than the RIM, and the para-
meters are time varying due to the change of operating
conditions, such as speed, temperature, and rail config-

uration.

Modern control systems usually require detailed
knowledge about the system to be controlled; such
knowledge should be represented in terms of differential
or difference equations. This mathematical description
of the dynamic system is named as the model. There
can be different motives for establishing mathematical
descriptions of dynamic systems, such as: simulation,
prediction, fault detection, and control system design.
In this sense, basically there are two ways to obtain a
model; it can be derived in a deductive manner using
physics laws, or it can be inferred from a set of data col-
lected during a practical experiment. The first method
can be simple, but in many cases is excessively time-
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consuming; it would be unrealistic or impossible to ob-
tain an accurate model in this way. The second method,
which is commonly referred as system identification [22],
could be a useful short cut for deriving mathematical
models. Although system identification not always re-
sults in an accurate model, a satisfactory one can be
often obtained with reasonable efforts. The main draw-
back is the requirement to conduct a practical experi-
ment, which brings the system through its range of op-
eration [6].

Due to their nonlinear modeling characteristics, neural
networks have been successful applied in control sys-
tems, pattern classification, pattern recognition, and
identification problems. The best well-known training
approach for recurrent neural networks (RNN) is the
back propagation through time [10]. However, it is a
first order gradient descent method, and hence its learn-
ing speed could be very slow. Another well-known train-
ing algorithm is the Levenberg-Marquardt one [10]; its
principal disadvantage is that is not guarantee it will find
the global minimum and its learning speed could be slow
too, this depends on the initialization. In past years, Ex-
tended Kalman Filter (EKF) based algorithms has been
introduced to train neural networks [1]. With the EKF
based algorithm, the learning convergence is improved
[10]. The EKF training of neural networks, both feed-
forward and recurrent ones, has proven to be reliable for
many applications [10]. However, EKF training requires
the heuristic selection of some design parameters which
not always are an easy task [1].

On the other hand Particle Swarm Optimization
(PSO) technique, which is based on the behavior of a
flock of birds or school of fish, is a type of evolutionary
computing technique [14]. It has been shown that the
PSO training algorithm takes fewer computations and
is faster than the BP algorithm for neural networks to
achieve the same performance [14].

In this paper a recurrent high order neural network
(RHONN) is used to design the proposed neural iden-
tifier for nonlinear systems, whose mathematical model
is assumed to be unknown. The learning algorithm for
the RHONN is implemented using an Extended Kalman
Filter with particle swarm optimization (EKF-PSO)
based algorithm. We consider a class of Multi-Input
Multi-Output (MIMO) discrete-time nonlinear system,
for which we develop a neural identifier [16]; then this
identifier is applied to a discrete-time unknown nonlin-
ear system. This identifier is based on a recurrent high
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order neural network (RHONN) [17], which identify the
model of the unknown plant dynamics. The applicabil-
ity of these schemes is illustrated via experimental for a
Linear Induction Motor (LIM).

II. PRELIMINARIES

Through this paper, we use k as the sampling step,
k € N |o| as the absolute value and, ||e|| as the Euclidian
norm for vectors and as any adequate norm for matrices.
Consider a MIMO nonlinear system:

x(k+1) = F(x(k),u(k)) (1)
y(k) = h(z(k)) (2)

where y € " u € R, and FF € " x ™ — K" is a
nonlinear function.

A. The EKF Training Algorithm

It is known, that Kalman filtering (KF) estimates the
state of a linear system with state and output additive
white noises [9]. For KF-based neural network training,
the network weights become the states to be estimated.
In this case the error between the neural network out-
put and the measured plant output can be considered as
the additive white noise [10]. Although the white noise
assumption is seldom satisfied, the developed algorithm
has proven to be efficient in real applications [1], [10].
Due to the fact that the neural network mapping is non-
linear, an EKF-type is required [17]. The training goal
is to find the weight values which minimize the predic-
tion error. In this paper, we use an EKF-based training
algorithm described by

wi(k+1) = w; (k) +n,K;(k)e(k) (3)
Ki (k) = Pi(k)H;(k)M;(k)
Pi(k+1) = Pi(k)—K;(k)H (k) P; (k) + Q; (k)
i 1,---,n
with
M (k) = [Ri(k)+HT (k)P (k) H; ()] (4)
e(k) = yk)—y(k) (5)

where e (k) € R? is the output estimation error and
P; (k) € REixLi is the weight estimation error covari-
ance matrix at step k, w; € RFi is the weight (state)
vector, L; is the respective number of neural network
weights, y € RP is the plant output, y € R? is the NN
output, n is the number of states, K; € RL*P is the
Kalman gain matrix, Q; € RLi*Li is the NN weight es-
timation noise covariance matrix, R; € RP*P is the error
noise covariance, and H; € R*P is a matrix, in which
each entry (H,;) is the derivative of the ith neural out-
put with respect to ijth neural network weight (w,;),
given as follows:
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where ¢ = 1,...,n and 5 = 1,...,L;. Usually P;, Q;
and R; are initialized as diagonal matrices, with entries
P; (0), Q; (0) and R; (0), respectively. Due to typically
the entries P; (0), Q; (0) and R; (0) are defined heuristi-
cally, in this paper we propose the use of a PSO algo-
rithm in order to compute off-line such entries to improve
the EKF training algorithm, as follows.

B. PSO improvement for EKF Training Algorithm

Particle swarm optimization (PSO) is a swarm intelli-
gence technique developed by Kennedy and Eberhart in
1995 [13]. In fact, natural flocking and swarm behavior
of birds and insects inspired him to PSO. This technique
has been used in several optimization and engineering
problems ([14], [21]). In the basic PSO technique pro-
posed by Kennedy and Eberhart [13], great number of
particles moves around in a multi-dimensional space and
each particle memorizes its position vector and velocity
vector as well as the time at which the particle has ac-
quired the best fitness. Furthermore, related particles
can share data at the best-fitness time. The velocity of
each particle is updated with the best positions acquired
for all particles over iterations and the best positions are
acquired by the related particles over generations [23].

To improve the performance of the basic PSO algo-
rithm, some new versions of it have been proposed. At
first, the concept of an inertia weight was developed to
better control exploration and exploitation in [14], [19],
[23]. Then, the research done by Clerc [5] indicated that
using a constriction factor may be necessary to insure
convergence of the particle swarm algorithm. After these
two important modifications in the basic PSO, the multi-
phase particle swarm optimization (MPSO), the particle
swarm optimization with Gaussian mutation, the quan-
tum particle swarm optimization, a modified PSO with
increasing inertia weight schedule, the Gaussian particle
swarm optimization (GPSO) and the guaranteed con-
vergence PSO (GCPSO) were introduced in [2], respec-
tively.

In this paper the algorithm proposed in [14] is used in
order to determine the design parameters for the EFK-
Learning algorithm. Initially a set of random solutions
or a set of particles are considered. A random velocity
is given to each particle and they are flown through the
problem space. Each particle has memory which is used
to keep track of the previous best position and corre-
sponding fitness. The best value of the position of each
individual is stored as p;q. In other words, p;q is the
best position acquired by an individual particle during
the course of its movement within the swarm. It has an-
other value called the pyq, which is the best value of all
the particles p;q in the swarm. The basic concept of the
PSO technique lies in accelerating each particle towards
its piq and pyq locations at each time step. The PSO
algorithm used in this paper is defined as follows [14]:
1. Initialize a population of particles with random posi-
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tions and velocities in the problem space.

2. For each particle, evaluate the desired optimization
fitness function.

3. Compare the particles fitness evaluation with the par-
ticles p;q if current value is better than the p;; then set
piq value equal to the current location.

4. Compare the best fitness evaluation with the pop-
ulation’s overall previous best. If the current value is
better than the pyq, then set pyq to the particle’s array
and index value.

5. Update the particle’s velocity and position as follows:
The velocity of the ith particle of d dimension is given
by:

vig (k+1) = coviq (k) + cirand; (piq (k) — zia (K))

+corands (pga (k) — xiq (K))

The position vector of the ith particle of d dimension is
updated as follows:

Zig (k+ 1) = q (k) + via (k)

where ¢ is the inertia weight, c; is the cognition acceler-
ation constant and ¢y is the social acceleration constant.
6. Repeat the step 2 until a criterion is met, usually a
sufficiently good fitness or a maximum number of itera-
tions or epochs.

In case the velocity of the particle exceeds V. (the
maximum velocity for the particles) then it is reduced to
Vinaz- Thus, the resolution and fitness of search depends
on the Vi, 4z. If Vinae is too high, then particles will move
in larger steps and so the solution reached may not be the
as good as expected. If Vi, 4. is too low, then particles
will take a long time to reach the desired solution [14].
Due the above explained PSO are very suitable models
of noisy problems, as the one we are considering.

Since PSO has shown good results in optimization
problems [14] it will be used to optimize the values for
Kalman’s filter covariance matrices instead of heuristic
solutions. For this purpose, each particle will represent
one of the Kalman’s covariance entries.

III. NEURAL IDENTIFICATION

In this section, we consider the problem to identify
the nonlinear system

x(k+1) = F(x(k),u(k)) (7)

where y € R”, u € ™ and F € R x R — R" is
nonlinear function. To identify the system (7), we use a
RHONN defined as:

(k+1)—w zi(z(k),u(k)), i=1,---,n (8)

where x; (i =1,2,--- ,n) is the state of the i-th neuron,
L; is the respective number of higer-order connections,
{I,I,--- ,Ir,} is a collection of non-ordered subsets of
{1,2,--- ,n + m}, n is the state dimension, m is the

D.R. © AMCA Octubre de 2012

number of external inputs, w; (i = 1,2,---
respective on-line adapted weight vector.
Consider the problem to approximate the general
discrete-time nonlinear system (7), by the following
discrete-time RHONN series-parallel representation [18]:

Xi (k+1) = w2 (x(k),u(k)) + €y i=1,00

,m) is the

n (9)

where y; is the ¢-th plant state, €., is a bounded ap-
proximation error, which can be reduced by increasing
the number of the adjustable weights [18]. Assume that
there exists an ideal weights vector w} such that ||e,,]|
can be minimized on a compact set 2., C R The ideal
weight vector w; is an artificial quantity required for
analytical purpose [18]. In general, it is assumed that
this vector exists and is constant but unknown and w; is
its estimated. The RHONN is trained with a EKF-PSO
algorithm as defined above.

IV. LINEAR INDUCTION MOTOR APPLICATION

In this section, we apply the above developed scheme
to identify a three-phase linear induction motor. It is
important to note that the proposed scheme is developed
assuming that the plant model, parameters as well as
external disturbances (load torque) are unknown.

A. Motor Model

In order to illustrate the applicability of the proposed
scheme, in this section, the proposed neural identifier is
applied to the o — 8 model of a LIM discretized by the
Euler technique, which is considered unknown, [3], [15],
[12] as follows

gm(k+1) =
v(k+1)

qm (k) +v(k)T
(1 — KoT)v(k) — k1 TAra (k) pyisa (k)
—k1TArp(k)paisa(k)
k1T Ara(F)pyisp (k)
—k1TAr(k)pyisp(k) — ksTFL
Mok +1) = (1 —keT)\ra(k) + kaTv(k)prisa(k)
—k4Tpiisa(k) + ksTpyisa(k)
T i () — BiTu() i (F)
T pyigs ()
Mgl 41) = (1= KeT)As(k) + kiTo()pyisa (b)
—kaTpoisa (k) — ksTprisa(k)
T pyigs () + kaTo(R)py s (k)
+ksTpyisp(k)
(14 koT)isa (k) — k7T Ara (k) py
—ksT Ao (K)v(k)py + kT Arp(k)py
—ksT A p(k)v(k)py — k10T uq (k)
(14 ko Tisa (k) + KsTAra(K)o(k)py
—k7T Ao (k)py — kxT A5 (k) py

(k)

1
*k’gT/\Na k ’U(k’) k’loTU/g(k') (10)

isa(k+1) =

343



with

p1 = sin(npgm(k)), py = cos(nygm(k))
ny, L R
k _ plisr 7 ko — m
! DL, *" D,
1
ks = —, ks =nyLg,
3 Dm 4 D
R, L, R,
ks = ke = —
5 Lr ) 6 LT
kr = LR, kg = Lsrnp
L.(L2, — LSLT)’ L2 — LiL,
LgRS + LgTRT L,
Moo= T oLy T oL
T ST ST ST sr

where ¢, (k) is the position, v(k) is the linear velocity,
Ara (k) and A, 5(k) are the o and § secondary flux com-
ponents, respectively, iso (k) and is5(k) are the o and
B primary current components, respectively, usq (k) and
usg(k) are the o and 8 primary voltage components, re-
spectively, R, is the winding resistance per phase, R, is
the secondary resistance per phase, L, is the magnetiz-
ing inductance per phase, Ly is the primary inductance
per phase, L, is the secondary inductance per phase, FJ,
is the load disturbance, D,, is the viscous friction and
iron-loss coefficient and n,, is the number of poles pairs,
T is the sampling period [3].

B. Neural Identifier Design

The neural identifier proposed is designed as follows:

zi(k+1) = wi (k) S(v(k)) +wiz (k) S (gm (k)

za(k+1) = wa (k) S((k)? + waz (k) S(Ara(k))?
+was (k) S(Ara (k)"

z3(k+1) = ws (k) S(v(k))? +wsz (k) S\ra(k))?
+wss (k) S(Arp)"®

za(k+1) = wa (k) S(v(k)* + waz (k) SAra(k))?
+waz (k) S(Arp (k)"

w5k +1) = wsi (k) S(w(k)? +wsz (k) S(\ra(k))?
+wss (k) S(Arg(k))? + wsa (k) S(isa(k))?
+0.02178uq (k)

z6(k+1) = wer (k) S(v(k))? + wez (k) S(Ara(k))?
+wez (k) S(Ars(k))? (11)
+wey (k) S(iss(k))? + 0.02178us (k)

where S(z(k)) = atanh(Sz (k;)) + 7, #1(k) to identify
qm (), T2(k) to identify v(k), 23(k) to identify v (k),
24(k) to identify 1 5(k), 25(k) to identify i, (k) and 26 (k)
to identify ig(k). For this application only the fluxes are
considered unmeasurable. The training is performed off-
line, using a series-parallel configuration as shown in Fig.
1. Both the NN and LIM states are initialized randomly.
The associated covariances matrices are computed using
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Fig. 1. LIM Identification scheme

the PSO algorithm and the RHONN weights are updated
with the EKF as in (3). The input signals u, and ug
are selected as chirp functions.

B.1 Reduced order nonlinear observer

The last control algorithm requires the full state mea-
surement assumption [3]. However, rotor fluxes mea-
surement is a difficult task. Here, a reduced order non-
linear observer is designed for fluxes on the basis of rotor
speed and currents measurements. The flux dynamics in
(10). Therefore, the following observer is used [11]:

Ak+1) = A(k)— keTA(k) — ksTOT JI,(k)
+kyTOT JI, (k)v(E) (12)
+ksTOT I, (k)

where

[ Ao (k)
O
_ [ isa (k)
Is(k) - | i3 (k.) :|

_ [ cos(npgm(k))  —sin(nygm (k)

Ok) = | sin(npgm(k))  cos(npgm(k))
[0 -1
=01 o0 ]

The stability proof for (12) is presented in [11].

C. FEzperimental Results

The proposed scheme is depicted in Fig. 1. The
experiments are performed using a benchmark whose
schematic representation is depicted in Fig. 2. Fig. 3
shows the experimental benchmark for the LIM

The methodology used to implement experimental
identifier is as follows: 1) To validate and to test this
algorithm via simulation in Matlab/Simulink, using a
plant model and their respective parameters; 2) To
download the validated identifier to the DS1104 board;
3) To replace the simulated model state variable val-
ues by the induction motor measurements (current and
angular position, acquired through the DS1104 board
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A /D ports, and calculated (fluxes) state variables values;
4) To send back through the DS1104 board, the input
signals (voltages) defined as chirp signals 5) To process
the input signals through the Space Vector Pulse Width
Modulation (SVPWM) power stage and 6) To apply the
SVPWM output to the induction motor.

The experimental results are presented as follows: Fig.
4 and Fig. 5 display the identification performance for
the position and linear velocity, respectively; Fig. 6 and
Fig. 7 present the identification performance for the
fluxes in phase a and 3, respectively. Figs 8 and 9 por-
tray the identification performance for currents in phase
«a and S, respectively. Finally Fig. 10 shows the identi-
fication errors.

V. CONCLUSIONS

This paper has presented the application of recur-
rent high order neural networks to the identification of
discrete-time nonlinear systems. The training of the
neural networks was performed on-line using an ex-

Pastion (m)
T
.

i Ful T £l @ ™ ) )

Timaims)

Fig. 4. Position identification
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tended Kalman filter improved with a PSO algorithm.
Experimental results illustrate the applicability of the
proposed identification methodology for the off-line iden-
tification of a three phase induction motor. Researches
are being pursued to develop the on-line EKF-PSO
neural identification algorithm.
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